Markov Decision Processes
نویسنده
چکیده
The theory of Markov Decision Processes is the theory of controlled Markov chains. Its origins can be traced back to R. Bellman and L. Shapley in the 1950’s. During the decades of the last century this theory has grown dramatically. It has found applications in various areas like e.g. computer science, engineering, operations research, biology and economics. In this article we give a short introduction to parts of this theory. We treat Markov Decision Processes with finite and infinite time horizon where we will restrict the presentation to the so-called (generalized) negative case. Solution algorithms like Howard’s policy improvement and linear programming are also explained. Various examples show the application of the theory. We treat stochastic linear-quadratic control problems, bandit problems and dividend pay-out problems. AMS 2010 Classification: 90C40, 60J05, 93E20
منابع مشابه
Accelerated decomposition techniques for large discounted Markov decision processes
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملOn $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملFrom Colored Petri Nets to Markov Decision Processes
The present work is motivated by the need to consider stochastic behavior when planning production mix in a manufacturing system. Because methods that are suitable for planning are not always appropriate for modeling the systems and viceversa, two methods are combined here: systems are modeled using colored Petri nets and then converted into Markov decision processes. A special type of Petri ...
متن کاملOptimal Control of Markov Regenerative Processes
In the paper the integration of available results on SemiMarkov Decision Processes and on Markov Regenerative Processes is attempted, in order to de ne the mathematical framework for solving decision problems where the underlying structure state process is a Markov Regenerative Process, referred to as Markov Regenerative Decision Process. The essential question investigated here is which descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010